Color Theory

COMP575/COMP770

Today:

- Finish up Color
- Tone mapping
- Image representation

Color Theory

- CIE XYZ color space
 - 3 color matching functions: X, Y, Z
 - Y is luminance
 - $\bullet\,\,X$ and Z are color values

WP user acdx

Color Theory

- xyY color space
 - Since Y is luminance, it carries no color data
 - ${\boldsymbol{\circ}}$ Chromaticity can be carried in new parameters x and y

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$

$$Y = Y$$

$$X = \frac{Y}{y}x$$

$$Z = \frac{Y}{y}(1 - x - y)$$

Color Theory

- Gamut
 Formed by plotting x,y colors
- Let's mix colors!

The line between two points represents all the mixes possible with those colors.

Color Theory

Color Theory

Intuitive colors? RGB is not necessarily intuitive with human color perception.

Color Theory

• RGB model

Visual Computing, Nielsen et al.

Color Theory

- HSV model
 - Color wheel (hue), saturation, value

Color Theory

• HSV model

Today:

- Finish up Color
- Tone mapping
- Image representation
- Signal processing
- Sampling
- Reconstruction

Tone mapping

- Images
 - Stored for easy display
 - Not accurate representations
 - Most output devices show 256 brightness levels
 - Most image formats store 256 brightness levels

Tone mapping

- Humans perceive more than 256 brightness levels
 - 4-5 log units, 100,000 : 1
 - Images are typically 2 log units, 100 : 1
- Your simulation images will have more than 256 brightness levels
 - Likely RGB float values
 - How to store them as standard images? (RGB bytes)

Tone mapping

- High dynamic range
 - This is normal range for humans
 - Images are low dynamic range
 - Must take HDR images and map them into smaller range

Tone mapping

- Clamping
 - Only keep small range (0.0 1.0)
 - Clamp low and high values
- Issues?

Can discard large amounts of the image, or even the entire image!

Tone mapping

- Remap values
 - Linear scaling to destination values
- Issues?

$$n = \frac{L}{L_{max}}$$

Can remap many colors to the same value, losing detail.

Tone mapping

- Many, many more mappings...
 - Average luminance scale

$$n = 0.5 \cdot \frac{L}{L_{avg}}$$

Т

- Preserve color ratios
- Separate reflectence and illuminance

Can remap many colors to the same value, losing detail.

Today:

- Finish up Color
- Tone mapping
- Image representation
- Signal processing
- Sampling

• Reconstruction

Image representation

- Grid of values
 - Each value is a 'pixel'
- How to store?
 - Single array with map/unmap function
 - 2d array (x,y dimensions)
 - Could be by spatial dimension
 - or channel dimension

Image representation

Image representation

- What is a pixel?
 - Little box of color?

A pixel stores a single discrete sample result. It is not necessarly the color for the area under the pixel.

Image representation

• Aliasing

It is impossible to tell an aliased image from an image of an object that is similar to the alias pattern.

Image representation

• Aliasing